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Overview

AGN analysis is much the same as for other
source types, but some tasks more relevant,
SO certain “problems” more common

Light curve calculation - tutorial / problems
Variability testing - 1FGL and 2FGL methods

Absolute “goodness-of-fit” measure in spectral
modeling

Flux / Index correlations



Light curve tutorial

e Choices of light curve
— Regular binning with likelihood analysis
— Adaptive binned with likelihood analysis
— Aperture photometry
— Bayesian blocks (constant rate segments)
— Others?
e Choice depends on your needs

e Flux vs Flux/Index light curves



Light curve tutorial

e Choices of light curve

< Regular binning with likelihood analysis >
— Adaptive binned with likelihood analysis

— Aperture photometry
— Bayesian blocks (constant rate segments)
— Others?

e Choice depends on your needs

e Flux vs Flux/Index light curves



Regular flux LC w/Likelihood

1. Perform a standard likelihood analysis of the
full time period - denote “DC analysis”

 |dentify sources in the ROI
 Measure spectra over the full time range
* Get best-fit “DC XML model”



Regular flux LC w/Likelihood

2. Determine what binning is reasonable

* Based on science goals and strength of
source of interest

* Number of bins should not be much larger
than TSpc/25

* Consider how the presence of upper limits
will affect your analysis

* Avoid periods which are close to being
integer fractions of the orbital precessional
period of 53.7day.



Regular flux LC w/Likelihood

3. Prepare an ROI model for the time bins

* Freeze spectral shapes of all background
sources (PL index, alpha, beta...)

* Freeze all parameters of weak background
sources - these will cause convergence
problems. TSpc/Noin<4 or 9

* For flux-only LC, freeze spectral shape of
source of interest. Smaller flux errors and
better sensitivity to variabillity.



Regular flux LC w/Likelihood

4. Decide on criteria for upper limits (2FGL?)
* TSi<10 or AFi/Fi>0.5 (or Npredi<3)
* 95% Bayesian UL when TSi<1.

e 95% Profile method otherwise
[ delta = chi2inv(27(0.95-0.5))/2 = 2.71/2 ]

5. Divide data into bins (gtselect)
6. Run likelihood analysis on each
7. Check each analysis for problems (see later)

8. Compute upper limits where necessary



Example from 2FGL

2FGL J0530.8+1333 - PKS 0528+134
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Error-matrix problems in LCs

A relatively common problem in calculation of
LC points is that the minimizer may not
calculate the error matrix properly

Usually the minimizer will converge, and the
model parameters will be OK...

But the errors can be VERY wrong
Hence a x? fit to a constant can be wrong

This seems to be related to parameters that are
not properly constrained (and hence hit limits).



F(E>1 GeV)x10°

Sample LAT LC from

http://arxiv.org/abs/1101.2764

HE gamma-rays (Fermi)|-
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Right point has smaller
error bar than others at
same flux level.

Left point has error bar
so small it is not
visible. Potential
disaster for variability

test! Aleksié et al. 10


http://arxiv.org/find/astro-ph/1/au:+Aleksic_J/0/1/0/all/0/1
http://arxiv.org/find/astro-ph/1/au:+Aleksic_J/0/1/0/all/0/1
https://confluence.slac.stanford.edu/x/I4o5Ag
https://confluence.slac.stanford.edu/x/I4o5Ag

Integral Flux (x107° cm™2s™")

Sample flux/index LC
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Automated test?

e Need some automatic way to find points
whose errors are “too small”

e Doug told us that minimum error (variance) is
given by Cramér—Rao bound. But that is not
calculated in ST

e Recognize that if source model has
converged and predicts Npred counts, then
ratio of flux error to flux (or/F) should not be
better than that of Poisson counts underlying
measurement: sgrt(Npred)/Npred
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Simple test to find such points
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Plot of flux/flux-error to npred/sqrt(npred) and
find outliers. These should be investigated.

D. Horan 13



Simple test to find such points

>>> from math i1mport *

>>> 1mport BinnedAnalysis

>>> Obs=...

>>> like=...

>>> like.f1it ()

>>> src="'VER0D21"

>>> flux=like.normPar (src) .getValue ()
>>> error=like.normPar(src) .error ()
>>> npred=like.NpredValue (src)

>>> print error/flux, sqgrt (npred)/npred
0.0281931953422 0.421340108935

>>> print like.optObject.getRetCode ()

102 < Anything other than zero indicates problems

D. Horan 14




Check MINUIT status

gtlike with chatter=3

ERR MATRIX NOT POS-DEF

Minult fit quality: Z estimated distance:
pyLikelihood

obs = BinnedObs(...)

li1ke = BinnedAnalysis (obs, ' model.xml’, "MINUIT')

minult obj pyLike.Mlinuit (like.logLike)
like.fit (covar=True, optObject=minuit obj)
distance from minimum=minult obj.getDilistance ()
qual minult obj.getQuality ()

0:

Error matrix not calculated at all

|: Diagonal approximation only, not accurate

2: Full matrix, but forced positive-definite (i.e. not accurate)

3: Full accurate covariance matrix (After MIGRAD, this is the indication
of normal convergence.)

15



Integral flux (300 MeV-300 GeV) [cm™s1]

Conjunctions with the Sun

e Conjunctions with
the Sun can lead
to contamination of
the LC by gamma
rays from the Sun.

In 2FGL we flag all
periods when the

sun-to-source
~54700 54800 54900 55000 55100 55200 55300 55400 55500 55600 S€paAration is less
Time (M) P.Fortin  than 2.5deg.

* Always check the ecliptic coordinates of the source
* For sources with low ecliptic latitude remove time
periods where the source-to-Sun separation is small 1



Recommendations for LC

Follow the strategy of 1FGL / 2FGL

Freeze spectral shape parameters (PL index,
alpha/beta, Ebreak etc...)

Freeze very weak background sources that
have very low TS values

Set threshold on TS, AF/F (and Npred?) and
calculate upper limits for weaker sources

Look for suspicious points! Check MINUIT
status.

17



Variability testing
e |f you claim variability (or lack of it) then a
guantitate test is a good idea.

e Different variability tests are available and may
be useful in certain circumstances

— 1FGL chi-squared test for a constant flux
— 2FQGL likelihood test for a constant flux
— Bayesian blocks test for Poisson process

o 2FGL method is more sensitive than 1FGL (but
more complex to compute)

18



1FGL variability index

1FGL J2253.9+1608 — 3C 454.3

— N o
& N & &) & IN
I I I I

Flux [10"%ph cm™2 7]

'

O
6)
v

o
T

700 750 800 850 900
MJD-54000 [days]

950

1000

X2 criterion based on best-
fit fluxes and flux errors in

LC. 1

Giz + (frelFi)2

[ —

> wikF;
Zi wj

Fwt:

V=" wi(F — Fu),
No variability: V ~ x2(N-1)
Prescription to include
upper limits and
systematic errors Iin
exposure. 9



1FGL variability index

1FGL J2253.9+1608 — 3C 454.3
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The 1FGL method gives
significantly smaller
values than expected from
¥2 statistics.

Method is therefore less
sensitive to variable
sources than desired.

In this method, likelihood
IS assumed Gaussian. But
not true for weak fluxes.

In 2FGL variability index is
based on actual
likelihood.
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2FGL variability index

e The 2FGL variability index is based on a
comparison of the log likelihood values for the
time bins under two hypothesis:

0. Null hypothesis: the flux is constant in all
time bins - Fconst - found by ML over all bins

1. Alternate hypothesis: the source flux in each
bin is different - F; - found by ML in each bin

e Sum log likelihoods in each - logL©@ & logL(")
o Wilks’theorem: TSvar = 2AlogL ~ x?(N-1)

21



2FGL variability index

How to find Fconst? Minimized over all bins?

Turns out that in many circumstance Fconst|S
close to the value of the source flux from the DC
analysis - Fconst= Fpc

This was assumed to be true in 2FGL

This gives a simple recipe - compare the
summed likelihood with the flux optimized in
each bin to the summed likelihood with Fpc

Can improve on this - e.g. try Foc & Fpc#xAFpc

22



Recipe: 2FGL variability

1. Analyze full time range - “DC analysis”
2. Determine binning

3. Prepare “DC model”

4. Optional: decide criteria for upper limits

 The 2FGL variability index works
whether you calculate ULs or not

5. Divide data into bins

23



Recipe: 2FGL variability

6. Run likelihood analyses on each bin

a. using DC model, but with the flux of the
source of interest frozen at its DC value.
Record total likelihood value - logL®©)

b. Optional: repeat last step with flux frozen at
values of say Fpc+2AFpc & Fpc+AFpc - In
this case there are multiple test values of
logL©;for the different fluxes tried.

c. as normal with source flux free - logL(?);

24



Recipe: 2FGL variability

7. Check each analysis for problems
8. Optional: compute upper limits

9. Calculate the summed likelihood under the
two hypotheses: logL©@ and logL(?)

* Optional: If multiple test values of logL®©
were calculated (step 6b) then the peak
should be found by fitting a parabola to the
three points around the highest

10.Calculate TSvar

25



Number of sources
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method. Values slightly
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e Source variability
present to some degree
(AGN)

* Small systematic in
exposure calculation

¢ In ZFGL FConst was not
optimized explicitly

More sensitive than 1FGL

method! o



Spectral issues



Spectral model comparisons

e Changes in 2AlogL allows “nested”
spectral models to be compared
statistically

— Log parabola (LP) to power law (PL)
— Broken power law (BPL) to PL
— PL with exponential cutoff (ECQO) to PL

e But be careful comparing non-nested
models, e.g. trying to choose between
BPL and LP

28



Spectral model comparisons

10° = e BPL2 (parameters derived from a loglikelihood profile fitting)
i Flux (10 8 ph cm 2 s -1) Indexi Index2 Ebreak (MeV) LoglL Delta LogL
o 10°L Quiet 3.52+/-0.08 2.34+/-0.02 2.95+/-0.07 q1ppp +1%0 , . 100325.3 -31.6
o =
5 i Plateau  11.2+/-0.2 2.28+/-0.02 3.0+/-0.1  ogpp +300 495221 -18.1
o ] -600
— -
o
:" 107k Flare 43.0+/-0.6 2.15+/-0.01 2.81+/0.05 1700 +100 66656.7
E Post-flare 20.2+/-0.3 2.29+/0.02 3.2+/-0.1  p3pp 4300 , 620828 -44.4
_ MJD=55540.0-55502.6
10" ¢ LogParabola
=an1 1 r ool T I R R T B
10° 10’ 10° TS
E (MeV) Normalization (1e-9) Index Eb (MeV) beta LoglL Delta LogL
Quiet 0.192+/-0.004 2.61+/-0.03 1000 0.11+/-0.01 100330.6 -26.3
10° Plateau  0.75+/-0.02 2.39+/-0.02 1000 0.06+/-0.01  49526.4
- Flaring 3.40+/-0.06 2.36+/-0.02 1000 0.109+/-0.009 66657.5
. i Post-flare 1.32+/-0.03 2.49+/-0.02 1000 0.12+/-0.01  62089.8
- ol
q"’ 10 3 =
E :
o ] ) Prefactor (1e-7) Index Eb p1 LogL Delta LogL
o .
W 10k : Quiet 0.49+/-0.02 2.30+/-0.04 0.01 5000+/-1000 100332.8 -24.1
- E Plateau 1.41+/-0.05 2.23+/-0.03 0.01 11000+/-2000 49521.9
- MJD=55516.5-55523.5 Flaring  5.0+/-0.1 2.09+/-0.02 0.01 6200+/-700  66645.7
0 Post-flare 2.56+/-0.07 2.21+/0.02 0.01 5900+/-800  62080.5
10° 10’ 10
E (MeV)

L. Escande & B. Lott 29



vF, (ergcm?s?)

vF, (ergecm?s™)
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Indoy? Ehroak (MaV) LogL  Delta LogL

Wilks’ theorem can be used to |~ ™

conclude that all the models

leoo 49522.1 -18.1

(BPL, LP, ECOQO) are preferred e wme =

over the simple PL. However it

IS not correct to use the

pgl Delta LogL
p0330.6 -26.3

2AlogL values to say that ECO ZZE?Z

IS preferred over BPL or

LP 089.8 372

I MJD=55516.5-55523.5

Prefactor (1e-7) Index Eb
Quiet 0.49+/-0.02 2.30+/-0.04 0.01
Plateau 1.41+/-0.05 2.23+/-0.03 0.01

Flaring 5.0+/-0.1 2.09+/-0.02 0.01

Post-flare 2.56+/-0.07 2.21+/-0.02 0.01

p1 LoglL Delta LogL
5000+/-1000 100332.8 -24.1

11000+/-2000 49521.9 :
6200+/-700 66645.7
5900+/-800 62080.5 -4b.
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v F, (ergem?s)

vF, (ergcm?s?)

Spectral model comparisons
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Absolute “goodness of fit” measure using
flux in band values and chi-squared fit.
 Calculate flux in band values
 Calculate BPL, LP, ECO model
prediction for each band
e Compute X2 for each model
See 1FGL, 4C21.35, 3C454.3 papers
Can be done with Likelihood also in
manner similar to variability test
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Optimization of BPL break
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One final thought on BPL models... optimization of
break energy with ST minimizers does not work well.
Better to calculate the Likelihood profile and find

minimum and confidence interval manually (AlogL=0.5)
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Flux/Index correlations
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In a PL fit the integral flux and spectral index
are intrinsically (mathematically) related
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Flux/Index correlations
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Beware of Harder/Weaker correlations
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“Decorrelation energy”

e The correlation can be eliminated if the
integral flux is expressed above the “integral
flux decorrelation energy”

(see http://tinyurl.com/LAT-decorrelation)

e Not to be confused with “Pivot energy” or
“differential flux decorrelation energy” - Eo

e Optimal integral window has low energy
bound of:
IN(Eiow) = INn(Eo) - 1/(y-1) [seeeq.?21]
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